Prostanoid receptors regulate the volume-sensitive efflux of osmolytes from murine fibroblasts via a cyclic AMP-dependent mechanism.
نویسندگان
چکیده
The ability of prostanoid receptors to regulate the volume-dependent efflux of the organic osmolyte taurine from murine fibroblasts (L cells) via a cAMP-dependent mechanism has been examined. Incubation of L cells under hypoosmotic conditions resulted in a time-dependent efflux of taurine, the threshold of release occurring at 250 mOsM. Addition of prostaglandin E(1) (PGE(1)) potently (EC(50) = 2.5 nM) enhanced the volume-dependent efflux of taurine at all time points examined and increased the threshold for osmolyte release to 290 mOsM. Maximal PGE(1) stimulation (250-300% of basal) of taurine release was observed at 250 mOsM. Of the PGE analogs tested, only the EP(2)-selective agonist butaprost (9-oxo-11alpha,16S-dihydroxy-17-cyclobutyl-prost-13E-en-1-oic acid) was able to enhance taurine efflux. Inclusion of 1,9-dideoxyfoskolin, 5-nitro-2-(3-phenylpropylamino) benzoic acid, or 4-[(2-butyl-6,7-dicloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]-butanoic acid blocked the ability of PGE(1) to enhance taurine release, indicating the mediation of a volume-sensitive organic osmolyte and anion channel. The ability of PGE(1) to increase osmolyte release from L cells was mimicked by the addition of agents that inhibit cAMP breakdown, directly activate adenylyl cyclase, or are cell-permeant analogs of cAMP. Taurine release elicited by either PGE(1) or 8-(4-chlorophenylthio)-cAMP was attenuated by >70% in L cells that had been stably transfected with a mutant regulatory subunit of cAMP-dependent protein kinase (PKA). PGE(1) stimulation of taurine efflux was not attenuated by either depletion of intracellular calcium or inhibition of protein kinase C. The results indicate that activation of prostanoid receptors on murine fibroblasts enhances osmolyte release via a cAMP and PKA-dependent mechanism.
منابع مشابه
Receptor regulation of osmolyte homeostasis in neural cells.
The capacity of cells to correct their volume in response to hyposmotic stress via the efflux of inorganic and organic osmolytes is well documented. However, the ability of cell-surface receptors, in particular G-protein-coupled receptors (GPCRs), to regulate this homeostatic mechanism has received much less attention. Mechanisms that underlie the regulation of cell volume are of particular imp...
متن کاملEffect of Prostaglandin E2 on Vascular Endothelial Growth Factor Production in Nasal Polyp Fibroblasts
PURPOSE Angiogenesis is involved in the pathogenesis of chronic rhinosinusitis with nasal polyps. We aimed to investigate the effects of prostaglandin E2 (PGE2) on vascular endothelial growth factor (VEGF) production, the role of E-prostanoid (EP) 4 receptors, and the signal transduction pathway mediating VEGF production in nasal polyp-derived fibroblasts (NPDFs). METHODS Eight primary NPDF c...
متن کاملProstaglandin D2 inhibits collagen secretion from lung fibroblasts by activating the DP receptor.
Lung fibroblasts are responsible for collagen secretion during normal tissue repair and the development of fibrosis. Many other prostaglandins have been reported to regulate collagen synthesis in lung fibroblasts, but the role of prostaglandin D2 (PGD2) is unknown. In this study, we investigated the effect of PGD2 on type I collagen secretion in human lung fibroblasts. Pretreatment with PGD2 (0...
متن کاملProstaglandin E(2) inhibits collagen expression and proliferation in patient-derived normal lung fibroblasts via E prostanoid 2 receptor and cAMP signaling.
Uncontrolled fibroblast activation is one of the hallmarks of fibrotic lung disease. Prostaglandin E(2) (PGE(2)) has been shown to inhibit fibroblast migration, proliferation, collagen deposition, and myofibroblast differentiation in the lung. Understanding the mechanisms for these effects may provide insight into the pathogenesis of fibrotic lung disease. Previous work has focused on commercia...
متن کاملActivation of muscarinic cholinergic receptors enhances the volume-sensitive efflux of myo-inositol from SH-SY5Y neuroblastoma cells.
A mechanism used by cells to regulate their volume under hypo-osmotic conditions is the release of organic osmolytes, one of which is myo-inositol. The possibility that activation of phospholipase-C-linked receptors can regulate this process has been examined for SH-SY5Y neuroblastoma cells. Incubation of cells with hypo-osmolar buffers (160-250 mOsm) led to a biphasic release of inositol which...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 319 2 شماره
صفحات -
تاریخ انتشار 2006